2020考研数学的概率论核心考点与常见题型

  • 来源: 学府考研
  • 浏览: 841
  • 2019-11-28
我要分享:
摘要:考研复习进入强化阶段,这一阶段的高效复习非常关键。今日学府考研带来的干货是考研数学概率论部分的核心考点与常见题型,一起来看看吧!

  随机事件与概率部分

  重点难点:

  重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式

  难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算

  常考题型:

  (1)事件关系与概率的性质

  (2)古典概型与几何概型

  (3)乘法公式和条件概率公式

  (4)全概率公式和Bayes公式

  (5)事件的独立性

  (6)贝努利概型

  假设检验部分

  1.定义:先对总体的分布中某些未知参数作某种假设,然后由所抽取的样本,构造合适的统计量,对所提出的假设作出判断:是接受还是拒绝,就称为假设检验。

  大纲仅要求对总体分布函数中的未知参数提出假设并作检验,称为参数的假设检验。

  2.假设检验的基本原理——小概率事件的实际不可能性原理(简称小概率原理)。

  假设检验的推断原理是小概率事件的实际不可能原理即小概率原理,推断方法是概率性质的反证法。

  所谓小概率事件原理是指人们根据长期的经验坚持这样一个信念:概率很小的事件在一次实际试验中是不可能发生的。如果在一次试验中小概率事件居然发生了,人们仍旧坚持上述信念,而宁愿认为此事件的前提条件起了变化,即认为假设和实际有矛盾,从而否定假设。

  因此,假设检验实际上是一种反证法,即概率性质的反证法。具体地讲,它是指首先提出假设,然后根据一次抽样所得的样本值进行计算,后按照一定的概率标准对假设作出鉴别:若小概率事件发生,则否定假设;若小概率事件未发生,则认为假设是可以接受的。

  重点难点:

  重点:单个正态总体的均值和方差的假设检验

  难点:假设检验的原理及方法

  常考题型:

  单正态总体均值的假设检验

  多维随机变量及其分布部分

  重点难点

  重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布

  难点:多维随机变量的描述方法、两个随机变量函数的分布的求解

  常考题型

  (1)二维离散型随机变量的联合分布、边缘分布和条件分布

  (2)二维离散型随机变量的联合分布、边缘分布和条件分布

  (3)二维随机变量函数的分布

  (4)二维随机变量取值的概率计算

  (5)随机变量的独立性

  随机变量的数字特征部分

  重点难点

  重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数

  难点:各种数字特征的概念及算法

  常考题型

  (1)数学期望与方差的计算

  (2)一维随机变量函数的期望与方差

  (3)二维随机变量函数的期望与方差

  (4)协方差与相关系数的计算

  (6)随机变量的独立性与不相关性

  参数估计部分

  本章的重点内容

  参数的点估计、估计量与估计值的概念;

  一阶或二阶矩估计和最大似然估计法;

  未知参数的置信区间;

  单个正态总体均值和方差的置信区间;

  两个总体的均值差和方差比的置信区间.

  本章重点是矩估计法和最大似然估计法,是常考题型,有时题目会要求验证所得估计量的无偏性.

  常见典型题型

  1.统计量的无偏性、一致性或有效性;

  2.参数的矩估计量或矩估计值或估计量的数字特征;

  3.参数的最大似然估量或估计量或估计量的数字特征;

  4.求单个正态总体均值的置信区间.

  中心极限定理部分

  本章的重点内容

  三个大数定律:切比雪夫定律、伯努利大数定律、辛钦大数定律;

  两个中心极限定理:棣莫弗——拉普拉斯定理、列维——林德伯格定理.

  本章的内容不是重点,也不经常考,只要把这些定律、定理的条件与结论记住就可以了.

  常见典型题型

  1.估计概率的值;

 

  2.与中心极限定理相关的命题.

好成绩,从选择好老师开始

赵宇 考研政治

全国优秀高端教育品牌学府考研精品课研发团队,旨在为每一位考研学子提供最有效、最贴近实战的考研辅导课程

立即预约

热门专题

已有2015名学员在学府学习

你想学什么?写出来

Copyright© 2009-2020 北京学之府教育科技有限责任公司 (xuefu.com) All Rights Reserved

陕ICP备18002389号-10